All Distributed Resources requirements are subject to Company's Minimum Requirements for Interconnection Service and Ohio Administrative Code 4901:1-22 (OAC). These Technical Requirements by the Company shall not be in conflict with any requirements in the OAC. It is acknowledged that IEEE Standard 1547 "Standard for Interconnecting Distributed Resources with Electric Power Systems" (IEEE 1547)¹ is the basis for interconnection Technical Requirements for most jurisdictions. The intent is to utilize IEEE 1547 requirements and to supplement those with a minimal number of additional requirements where appropriate. The purpose of a minimal number of Company requirements not included in IEEE 1547 is to add clarity to some IEEE 1547 sections and to specify requirements for issues not addressed in IEEE 1547. These Technical Requirements apply to all Distributed Resource technologies including synchronous machines, induction machines, or static power inverters/converters.

The interconnection system hardware and software used by a Distributed Resource to meet these Technical Requirements do not have to be located at the Point of Common Coupling. However, the Technical Requirements shall be met at the Point of Common Coupling.

A table summarizing the Distributed Resource Technical Requirements is attached as Appendix 1. The pertinent IEEE 1547 clause number(s) are shown in this table.

Basic Technical Requirements:

The Technical Requirements in IEEE 1547 cover the following areas, Voltage Regulation, Voltage Disturbances, Harmonic Current Injection, Direct Current Injection, Grounding Scheme Compatibility, Inadvertent Energizing, Monitoring Operation, Isolation Device, Withstand Performance, Paralleling Device, Response to Area EPS Faults, Reclosing Coordination, Unintentional Islanding, Voltage and Frequency Detection, Abnormal Voltage or Frequency, Reconnection Following a Disturbance, Secondary Grid and Spot Network Systems, and Testing and Maintenance.

Testing:

A Distributed Resource proposing to interconnect with the Company's transmission and distribution systems (AEP Ohio System) must be tested as per IEEE 1547 Clause 5 to demonstrate that the interconnection system meets the requirements of IEEE 1547 Clause 4. Documentation of the results of the Design Test and Production Tests shall be provided to AEP Ohio at the time of application unless such tests are to be conducted as part of the Commissioning Tests.

When the interconnection system of the Distributed Resource uses an assembly of discrete components, documentation of testing must be provided to AEP Ohio at the time of application to confirm the compatibility of the discrete components to properly function together. Otherwise AEP Ohio may require the Design Test to be conducted as part of the Commissioning Tests.

Written test procedures shall be approved by AEP Ohio for all tests to be performed as Commissioning Tests. To avoid delay, these test procedures should be submitted to AEP Ohio well in advance of the scheduled date of the Commissioning Tests.

A suggested format for test proposal submission and test result reporting can be found in Appendix 3 – AEP Guide for Testing and Reporting per IEEE 1547.1.

Additional Technical Requirements:

Circuit Breaker - If a main circuit breaker (or circuit switcher) between the interconnection transformer and the AEP Ohio System is required, the device must comply with the applicable

¹ IEEE publications are available from the Institute of Electrical and Electronics Engineers, 443 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331 (http://standards.ieee.org/).

current ANSI Standard from the C37 series of standards that specifies the requirements for circuit breakers, reclosers and interrupting switches.

Main Disconnect Switch (Voltages exceeding 480 volts) – A gang operated disconnecting device must be located at the Point of Common Coupling for all three phase interconnections. In all cases the disconnecting device must be clearly labeled, readily accessible to AEP Ohio personnel for use at all times and suitable for use by AEP Ohio as a protective tagging location. The disconnecting device shall have a visible open gap when in the open position and be capable of being locked in the open position.

The disconnecting device must have a ground grid designed in accordance with specifications to be provided by AEP Ohio. Operation of the device must be restricted to AEP Ohio personnel and properly trained operators designated by the interconnection customer. The disconnecting device must comply with the applicable current ANSI Standard from the C37 series of standards that specifies the requirements for circuit breakers, reclosers and interrupting switches.

Terminating Structure – When a new interconnection line is required, the interconnection customer shall provide a suitable structure to terminate the interconnection line. The customer is responsible for ensuring that terminating structure or substation structural material strengths are adequate for all requirements, incorporating appropriate safety factors. AEP Ohio will provide line tension information for maximum dead-end. The structure must be designed for the maximum line tension along with an adequate margin of safety.

Substation electrical clearances shall meet or exceed the requirements of the National Electrical Safety Code. Installation of disconnect switches, bus support insulators and other equipment shall comply with accepted industry practices.

Surge arresters shall be selected to coordinate with the BIL rating of major equipment components and shall comply with recommendations set forth in the applicable current ANSI Standard C62.2 that specifies the requirements for surge arresters and other surge protection devices.

Momentary Paralleling – For situations where the proposed Distributed Resource will only be operated in parallel with the AEP Ohio System for a short duration (less than 100 milliseconds), as in a make-before-break automatic transfer scheme, the requirements of IEEE 1547 do not apply except as noted in Clause 4.1.4. All make-before-break automatic transfer switch systems proposed by the interconnection customer must comply with UL 1008 and be listed by a nationally recognized testing laboratory.

Voltage Unbalance – The interconnection customer is responsible for operating the proposed Distributed Resource such that the voltage unbalance attributable to the Distributed Resource does not exceed 2.5% at the Point of Common Coupling.

Power Factor - Each Distributed Resource shall be capable of operating at some point within a power factor range from 0.9 leading to 0.9 lagging. Operation outside this range is acceptable provided the reactive power of the Distributed Resource is used to meet the reactive power needs of the electrical loads within the interconnection customer's facility or that reactive power is otherwise provided under tariff by AEP Ohio. The interconnection customer shall notify AEP Ohio if it is using the Distributed Resource for power factor correction.

System Stability – AEP Ohio may require a stability study for Distributed Resources if the aggregate generation is greater than 10 MW and in an area where there are known or posted stability limitations to generation located in the general electrical vicinity (e.g., three or four transmission voltage level busses from the transmission voltage bus serving the distribution circuit where the Distributed Resource proposes to interconnect.

Maintenance and Testing – The interconnection customer is responsible for the periodic scheduled maintenance on the interconnection system of the Distributed Resource (relays, interrupting devices, control schemes, and batteries that involve the protection of the AEP Ohio

System). Unless the equipment manufacturer provides study results that demonstrate the need for less frequency, interconnection systems that depend upon a battery for proper function shall be checked and logged once per month for proper voltage. At least once every four years, the battery must be either replaced or a discharge test performed.

A periodic maintenance program is to be established in accordance with the requirements of IEEE 1547. AEP Ohio may examine copies of the periodic test reports or inspection logs associated with the periodic maintenance program. Upon request, AEP Ohio shall be informed of the next scheduled maintenance and be able to witness the maintenance performed and any associated testing.

Monitoring – AEP Ohio reserves the right, at AEP Ohio's initial expense, to install special test equipment as may be required to perform a disturbance analysis and monitor the operation and control of the Distributed Resource to evaluate the quality of power produced by the Distributed Resource.

Evaluation of System Impact:

A Distributed Resource proposing to interconnect to the AEP Ohio System may have significant impact on the safety and reliability of one or more of the following portions of the electrical power system; the AEP Ohio Distribution System, the AEP Ohio Transmission System, the Distribution or Transmission System of a third party (called an Affected System) and the electrical system where the Distributed Resource is to be connected. AEP Ohio shall not be responsible for the evaluation of the safety and reliability impacts on the electrical system where the Distributed Resource is to be connected. AEP Ohio approval of a Distributed Resource interconnection should not be construed as an endorsement, confirmation, warranty, guarantee, or representation concerning the safety, operating characteristics, durability, or reliability of the Distributed Resource facility and the electrical system where it is connected.

AEP Ohio Distribution System Impact -

AEP Ohio is responsible for evaluating the system impact of a proposed Distributed Resource interconnection based upon the information provided in the interconnection application once the application is considered complete.

A study to determine system impact will be performed based upon the interconnection request's position in the Queue and the applicable time limits established by the regulatory authority having jurisdiction. The study time limits and study scope vary depending upon the regulatory authority and the type, size and proposed use of the Distributed Resource.

AEP Ohio supports limited study and the use of a screening process to expeditiously identify and approve Distributed Resources that can be interconnected without significant system impact. AEP Ohio screening criteria is based on the OAC.

Additional study time is generally required to evaluate Distributed Resources that are not precertified. The exception may be for Distributed Resources that have been evaluated previously by AEP Ohio and were found to meet the Technical Requirements including the necessary testing.

The possible outcomes of the system impact study could include the following:

1) The proposed Distributed Resource interconnection meets the Technical Requirements and there are no system impacts that would require modification or upgrade to either AEP Ohio facilities or the Distributed Resource installation;

2) The proposed Distributed Resource interconnection does not meet the Technical Requirements and modifications or changes are required to either AEP Ohio facilities or the Distributed Resource installation;

3) The proposed Distributed Resource interconnection would result in negative system impact and modifications or changes are required to either AEP Ohio facilities or the Distributed Resource installation;

4) The proposed Distributed Resource interconnection requires new AEP Ohio facilities.

The potential distribution system impacts listed in Appendix 2 may need to be examined as part of the system impact study.

AEP Ohio Transmission System Impact -

AEP Ohio will determine if there may be an impact to the AEP Ohio transmission system (including any transmission system stability impact) or an impact to a third party's system when the interconnection occurs on the AEP Ohio distribution system.

AEP Ohio will coordinate processing the interconnection request to assure the proper process is followed and all required milestones are met.

Affected System Impact -

AEP Ohio will review each request for interconnection to the AEP Ohio distribution system to determine if the potential exists for impact to a third party's system. For example, the distribution systems of several Rural Electric Cooperatives are interconnected to AEP Ohio distribution feeders.

If the potential exists for an impact to their system, AEP Ohio will notify the third party of the proposed interconnection request and coordinate processing the interconnection request to assure that the proper process is followed and all required milestones are met.

Distributed Resource Technical Requirements

Attribute	Requirement
Voltage Regulation	IEEE 1547 - Clause 4.1.1
Voltage Disturbances	IEEE 1547 - Clause 4.3.2
Harmonic Current Injection	IEEE 1547 - Clause 4.3.3
Direct Current Injection	IEEE 1547 - Clause 4.3.1
Grounding Scheme Compatibility	IEEE 1547 - Clause 4.1.2
Inadvertent Energization	IEEE 1547 - Clause 4.1.5
Monitoring Provisions	IEEE 1547 - Clause 4.1.6
Isolation Device	IEEE 1547 - Clause 4.1.7
Withstand Performance	IEEE 1547 - Clause 4.1.8.1 and Clause 4.1.8.2
Paralleling Device	IEEE 1547 - Clause 4.1.8.3
Response to Area EPS Faults	IEEE 1547 - Clause 4.2.1
Reclosing Coordination	IEEE 1547 - Clause 4.2.2
Unintentional Islanding	IEEE 1547 - Clause 4.4.1
Abnormal Voltage	IEEE 1547 - Clause 4.2.3
Abnormal Frequency	IEEE 1547 - Clause 4.2.4
Reconnection Following a	IEEE 1547 - Clause 4.2.6
Disturbance	
Secondary Grid and Spot	IEEE 1547 - Clause 4.1.4
Network Systems	
Testing	IEEE 1547 - Clause 5
Periodic Interconnection Tests	IEEE 1547 - Clause 5.5
Circuit Breaker	Meet appropriate ANSI C37 standard
Disconnect Switch	Three phase unit gang operated at Point of Common Coupling
Terminating Structure	Adequate structural material strength suitable to terminate line
Surge Arresters	Meet applicable ANSI C62.2 standard
Momentary Paralleling	Comply with Underwriter's Laboratories Standard 1008 and IEEE 1547 – Clause 1.3
Voltage Unbalance	Unbalance attributable to Distributed Resource 2.5% or less
System Stability	Study required for units greater than 10 MW when limitations exist

Potential Distribution System Impacts

Voltage Regulation - With the addition of the Distributed Resource, the voltage level on both the primary and secondary must be maintained within acceptable limits for both on peak and off peak conditions.

1) Reverse power flow through voltage regulators or load tap changers may cause the regulator or load tap changer to regulate the voltage incorrectly.

2) Improper settings of the Distributed Resource controls may result in the steady state voltage straying outside the + or - 5% limits at the point of common coupling on a 120 volt basis.

3) Low voltage may be experienced after a temporary fault or when restoring service after a permanent fault if the presence of the Distributed Resource is essential to the maintenance of adequate voltage.

4) The loss of Distributed Resource synchronous machine exciters may cause excessive reactive power losses and low voltages on a circuit.

5) The presence of Distributed Resources with varying output (e.g. wind turbines, photovoltaic cells, etc.) may cause excessive switching of capacitor banks and/or an excessive number of regulator or load tap changer operations.

6) When line drop compensators are used on a circuit, the presence of Distributed Resources may significantly alter the intended regulation scheme.

7) The presence of Distributed Resources on a secondary system may cause the off peak voltage level to exceed its upper limit.

8) The Distributed Resource owner could experience periods when his unit(s) trips off line from overvoltage due to system voltage excursions.

Voltage Flicker - Several Distributed Resource technologies have the potential for creating objectionable voltage flicker. In extreme cases the size of the Distributed Resource may need to be limited to prevent objectionable flicker or system improvements may be necessary to limit the voltage flicker. Possible flicker sources include:

1) Wind turbines may produce rapidly varying output due to changes in wind speed, wind turbulence, intensity, tower shadowing effects and blade pitching.

2) Photovoltaic (PV) installations may produce rapidly varying output due to intermittent cloud cover over the cells.

3) Reciprocating engine Distributed Resources may be produce rapid output fluctuations caused by engine misfiring due to low quality fuel.

4) Induction machine Distributed Resources may produce voltage flicker due to current inrush when they are connected.

5) Synchronous machine Distributed Resources may produce voltage flicker due to poor voltage matching and phase angle synchronization at contact closure.

6) Power inverter based Distributed Resources may not have soft start technology to limit the rate of change of power output at starting.

7) Interaction of Distributed Resources with other devices such as voltage regulators, load tap changers and switched capacitor banks may produce objectionable voltage flicker.

Overcurrent Protection and Protective Device Coordination - With the addition of a Distributed Resource on a circuit, another source of fault current is introduced. The available fault current at any location on the feeder will depend upon the type of fault (e.g. line-to-ground, three phase, double-line-to-ground, etc.), the fault impedance, and the status of the Distributed Resource on the feeder (i.e. on or off line). Each Distributed Resource technology has its own unique fault current characteristics.

The presence of Distributed Resources may create several problems with overcurrent protection and the coordination of protective devices. Some of the problems include:

1) The "reach" of overcurrent protective devices may be reduced due to a reduction in the fault current contribution from the station source with Distributed Resources on a feeder. For faults located downstream from a Distributed Resource, the fault current contribution from the station source will be reduced when the Distributed Resource unit is on line.

2) Recloser to fuse coordination may no longer exist with the introduction of a Distributed Resource on the feeder so fuses may blow for temporary faults.

3) Sectionalizers may misoperate if the Distributed Resource maintains voltage when the sectionalizer should be "counting" an operation.

4) Nuisance tripping of a circuit recloser or station breaker may occur from a fault located on an adjacent feeder due to the fault current contribution from the Distributed Resource.

5) The presence of an interconnection transformer with a primary voltage wye grounded winding connection and a secondary voltage delta connection at the Distributed Resource can desensitize ground fault relays and the ground fault settings on recloser controls.

6) The introduction of Distributed Resource to a secondary spot or grid network system can cause nuisance trips of protectors and protector cycling and may lead to out of phase protector closing resulting in equipment damage.

7) The presence of a Distributed Resource may exacerbate cold load pickup problems following a feeder outage.

8) The addition of a Distributed Resource may increase the available fault current to the point where utility system or customer owned protective device fault interrupting ratings are exceeded.

9) If the Distributed Resource remains on the feeder after a protective device opens for any reason, then the protective device may reclose with the system voltage and the Distributed Resource voltage out of synchronism.

10) Distribution automation schemes may be adversely affected by the introduction of Distributed Resources.

11) System under frequency conditions may result in feeder or transformer overload conditions.

Harmonic Current Injection - Several Distributed Resource technologies have the potential for introducing harmonic distortion. Possible harmonic issues include:

1) Rotating machines produce 3rd harmonic distortion. Machines having a pitch of either 5/6 and 11/16 introduce the most distortion with 2/3 pitch being the preferred pitch to minimize distortion.

2) Inverter based Distributed Resources may inject harmonic voltages and currents into the utility grid or may serve as a system sink for harmonics.

3) Wye-wye transformer connected Distributed Resources and single phase Distributed Resources have the potential for being the worst harmonic sources.

Other Issues - Several other issues relating to the interconnection of Distributed Resources need to be considered. Potential problems to look for include:

1) Voltage on unfaulted phases may approach 1.73 times nominal during single line to ground faults when delta-wye or delta-delta connected transformer banks are used for the Distributed Resource transformation.

2) Resonant overvoltages can occur if a synchronous or induction generator Distributed Resource is isolated with capacitors during line to ground faults.

3) Single phase switching of a delta connected Distributed Resource transformer bank may create ferroresonant overvoltage conditions.

4) Distributed Resources may present utility worker and public safety concerns by inadvertently re-energizing the electric power system during abnormal system conditions.

5) The addition of Distributed Resource may overload conductors or equipment.

6) The presence of a Distributed Resource may defeat attempts to clear fault conditions by continuing to energize the feeder during fault events.

7) Induction and synchronous machine Distributed Resources may be over excited by the presence of a capacitor bank in an unintentional islanding situation and produce high voltages in the island.

8) Inverter based Distributed Resources may inject direct current onto the feeder causing transformer saturation.

9) When a grounded-wye high-side/delta low-side connected transformer bank is used to connect a Distributed Resource, circulating current in the delta winding may result in transformer overloading. This transformer connection allows zero sequence current to circulate in the delta winding.

10) When feeders are switched from their normal configuration to affect load transfers or to restore power to customers during outage situations, the presence of a Distributed Resource may create voltage regulation problems, objectionable voltage flicker, improper protective device operation and coordination or other problems.

AEP Guide for Testing and Reporting per IEEE 1547.1

The purpose of this guide is to provide a suggested simplified format for test proposal submission and test result reporting. It will provide direction for and set AEP expectations of the customergenerator for the testing and reporting per IEEE 1547.1. IEEE 1547.1 specifies the type, production, and commissioning tests that shall be performed to demonstrate that the interconnection functions and equipment of the distributed resources conform to IEEE standard 1547. AEP recognizes the detail of IEEE 1547.1 can be intimidating at first glance. Once the document structure is understood, the customer-generator task becomes nothing more than a series of items for which to test and report results or report manufacturer test results. This guide does not remove the customer-generator's responsibility for reading, understanding, and complying with all of the IEEE 1547.1 contents, as well as any applicable local codes, standards, legislation, or commission order.

When AEP performs a system impact study in response to an application for interconnection of generation equipment 20 megawatts or less the customer-generator may need to test the interconnection system (ICS) to assure IEEE 1547 compliance. It is the customer-generator's responsibility to clearly communicate its testing proposal and test results report to AEP. The contents of this guide will help the customer-generator navigate IEEE 1547.1 when ICS testing is necessary.

IEEE 1547.1 is organized into 8 distinct articles. While the entire document is important, there are specific articles and sub-articles that warrant highlighting. They are:

- 1. Sub-article 4.3, Measurement accuracy and calibration of the testing equipment
 - a. When the customer-generator provides measurement equipment calibration traceability, place this documentation at the front of the test report.
- 2. Sub-article 4.4, Product information
 - a. This sub-article describes when special testing parameters or criteria are to be noted in the test report.
- 3. Sub-article 4.5, Test reports
 - a. In the test reports AEP expects to see a given section containing test results titled with the IEEE 1547.1 sub-article number of the test. This practice will keep the test reports clear and unambiguous. For example:
 - i. An **Over-voltage Magnitude** Type test result would be titled with **5.2.1.2 Over-voltage Magnitude test results**. (See Example A)
 - ii. An **Over-voltage Timing** Type test would be titled with **5.2.1.3 Overvoltage Timing test results**. (See Example A)
 - iii. A *Synchronization* Production test result would be titled with **6.3** Synchronization test results. (follow same format as Example A)
 - iv. A *Revised settings* Commissioning test result would be titled with **7.6 Revised Settings test results**. (follow same format as Example A)
 - b. Unless the test purpose or procedure outlined in each sub-article is modified, the test reports need only include test results including unit measured. Test reports containing dimensionless results will be returned as unacceptable. It will be understood that any and all test related purpose, procedure, requirement, and criteria will be contained within the identified IEEE 1547.1 sub-article and does not bear repeating in the customer-generator submitted test reports.

- c. Example B (Distributed Generation IEEE 1547.1 Testing Matrix) is a template spreadsheet that allows the customer to indicate how they plan to comply with a particular IEEE 1547.1 test and indicate devices, documents, and notes that relate to a given test.
- 4. Article 5, Type tests
 - a. It is the responsibility of the customer-generator to determine if any of the Type tests have been addressed by the manufacturer.
 - b. Type tests performed by the manufacturer shall be clearly identified by indicating on the manufacturer literature which Type test is addressed using the Type test number as described above. (See Example C)
- 5. Article 6, Production tests
 - a. It is the responsibility of the customer-generator to determine if any of the Production tests have been addressed by the manufacturer.
 - b. Production tests performed by the manufacturer shall be clearly identified by indicating on the manufacturer literature which Production test is addressed using the Production test number as described above. (See Example C)
- 6. Article 7, Commissioning tests
 - a. Sub-article 7.1.2 indicates what test procedures must be submitted to AEP for approval prior to testing.
 - i. The submitted customer-generator test procedures can simply be a list of the sub-article numbers of the Type, Production, and Commissioning tests that will be conducted by the customer-generator. It will be understood that any and all test related purpose, procedure, requirement, and criteria will be contained within the identified IEEE 1547.1 sub-article and does not bear repeating in the customergenerator submitted test procedures. (See Example B)
 - b. Any Type or Production sub-article number test not appearing in the list from item 7.a.i of this document must appear as satisfied per item 5.b or 6.b. (See Example C)
- 7. Article 8, Periodic interconnection tests
 - a. The periodic test schedule shall be included in the test results report.

The following Examples on pages 11 - 20 are representative of acceptable IEEE 1547.1 documentation.

Example D is a suggested cover sheet format for the customer's IEEE 1547.1 test results report package, which lists all of the support documents they plan to supply to support their claim of IEEE 1547 compliance.

DISTRBU	TED GENERATION IEE	Example A E 1547.1 TESTINC	RESULTS SUMMAR
The tables belo Deviation is abs	w summarize the results obta olute.	ined from testing. Nom	inal/Actual may be rounded.
	5 0 4 0 Over		
A-Phase Ov	5.2.1.2 Over er-Voltage Low Setting	-voltage Magnitud	16
A-Filase OV Trial	Nominal (V)	Actual V	Deviation (mV)
1 nai 1	121	121.1	50
2	121	121.1	25
3	121	121.2	150
4	121	121	40
5	121	121	35
5	121	121	
B-Phase Ov	er-Voltage Low Setting	<u> </u>	
Trial	Nominal (V)	Actual V	Deviation (mV)
1	121	121.1	50
2	121	121.1	50
3	121	121	25
4	121	121	-45
5	121	121	30
•			
C-Phase Ov	er-Voltage Low Setting	2	
Trial	Nominal (V)	Actual V	Deviation (mV)
1	121	121	5
2	121	121	15
3	121	121	-5
4	121	121	20
5	121	121	15
3-Phase Ov	er-Voltage Low Setting		
Trial	Nominal (V)	Actual V	Deviation (mV)
1	121	121.1	70
2	121	121	25
3	121	121.1	90
4	121	121	40
5	121	121	35
	5.2.1.2 Over	-voltage Magnitud	le
A-Phase Ov	er-Voltage Mid Setting		
Trial	Nominal (V)	Actual V	Deviation (mV)
1	138.5	138.6	55
2	138.5	138.5	15
3	138.5	138.5	10
4	138.5	138.5	30
5	138.5	138.5	45

B-Phase Over-Vol	tage Mid Setting		
Trial	Nominal (V)	Actual V	Deviation (mV)
1	138.5	138.5	20
2	138.5	138.5	30
3	138.5	138.5	10
4	138.5	138.6	80
5	138.5	138.6	70
C-Phase Over-Vol	tage Mid Setting		
Trial	Nominal (V)	Actual V	Deviation (mV)
1	138.5	138.5	20
2	138.5	138.6	55
3	138.5	138.5	40
4	138.5	138.5	10
5	138.5	138.6	50
3-Phase Over-Volt			
Trial	Nominal (V)	Actual V	Deviation (mV)
1	138.5	138.6	70
2	138.5	138.5	25
3	138.5	138.6	90
4	138.5	138.5	40
5	138.5	138.5	35
		Itage Magnitude	
A-Phase Over-Vol	tage High Setting		
Trial	tage High Setting Nominal (V)	Actual V	Deviation (mV)
Trial 1	tage High Setting Nominal (V) 156	Actual V 156	15
Trial 1 2	tage High Setting Nominal (V) 156 156	Actual V 156 156.1	15 55
Trial 1 2 3	tage High Setting Nominal (V) 156 156 156	Actual V 156 156.1 156.1	15 55 60
Trial 1 2 3 4	tage High SettingNominal (V)156156156156	Actual V 156 156.1 156.1 156.1	15 55 60 50
Trial 1 2 3	tage High Setting Nominal (V) 156 156 156	Actual V 156 156.1 156.1	15 55 60
Trial 1 2 3 4 5	tage High Setting Nominal (V) 156 156 156 156 156 156 156 156	Actual V 156 156.1 156.1 156.1	15 55 60 50
Trial 1 2 3 4 5 B-Phase Over-Vol	tage High Setting Nominal (V) 156 156 156 156 156 156 156 156 156 156 156 156 156 156 156 156 156	Actual V 156 156.1 156.1 156.1 156.1	15 55 60 50 75
Trial 1 2 3 4 5 B-Phase Over-Vol Trial	tage High SettingNominal (V)156156156156156156Nominal (V)	Actual V 156 156.1 156.1 156.1 156.1 Actual V	15 55 60 50 75 Deviation (mV)
Trial 1 2 3 4 5 B-Phase Over-Vol Trial 1	tage High Setting Nominal (V) 156 156 156 156 156 156 156 156 156 156 Nominal (V) 156 156 156	Actual V 156 156.1 156.1 156.1 156.1 156.1 Actual V 156	15 55 60 50 75 Deviation (mV) 20
Trial 1 2 3 4 5 B-Phase Over-Vol Trial 1 2	tage High Setting Nominal (V) 156 156 156 156 156 156 156 156 156 156 156 Vominal (V) 156 156 156 156	Actual V 156 156.1 156.1 156.1 156.1 156.1 Actual V 156 156	15 55 60 50 75 Deviation (mV) 20 30
Trial 1 2 3 4 5 B-Phase Over-Vol Trial 1 2 3	High Setting Nominal (V) 156	Actual V 156 156.1 156.1 156.1 156.1 Actual V 156 156 156	15 55 60 50 75 Deviation (mV) 20 30 10
Trial 1 2 3 4 5 B-Phase Over-Vol Trial 1 2 3 4 4	tage High Setting Nominal (V) 156	Actual V 156 156.1 156.1 156.1 156.1 156.1 156 156 156 156 156	15 55 60 50 75 Deviation (mV) 20 30 10 40
Trial 1 2 3 4 5 B-Phase Over-Vol Trial 1 2 3	High Setting Nominal (V) 156	Actual V 156 156.1 156.1 156.1 156.1 Actual V 156 156 156	15 55 60 50 75 Deviation (mV) 20 30 10
Trial 1 2 3 4 5 B-Phase Over-Vol Trial 1 2 3 4 5	High Setting Nominal (V) 156	Actual V 156 156.1 156.1 156.1 156.1 156.1 156 156 156 156 156	15 55 60 50 75 Deviation (mV) 20 30 10 40
Trial 1 2 3 4 5 B-Phase Over-Vol Trial 1 2 3 4 5 C-Phase Over-Vol	age High Setting Nominal (V) 156	Actual V 156 156.1 156.1 156.1 156.1 156.1 Actual V 156 156 156 156 156	15 55 60 50 75 Deviation (mV) 20 30 10 40 45
Trial 1 2 3 4 5 B-Phase Over-Vol Trial 1 2 3 4 5 C-Phase Over-Vol Trial Trial	High Setting Nominal (V) 156 Nominal (V) Nominal (V)	Actual V 156 156.1 156.1 156.1 156.1 156.1 Actual V 156 156 156 156 156	15 55 60 50 75 75 Deviation (mV) 20 30 10 40 45 45 Deviation (mV)
Trial 1 2 3 4 5 B-Phase Over-Vol Trial 1 2 3 4 5 C-Phase Over-Vol Trial 1 1 1 1 1	High Setting Nominal (V) 156	Actual V 156 156.1 156.1 156.1 156.1 Actual V 156 156 156 156 156 156 156 156	15 55 60 50 75 Deviation (mV) 20 30 10 40 45 45 Deviation (mV) 65
Trial 1 2 3 4 5 B-Phase Over-Vol Trial 1 2 3 4 5 C-Phase Over-Vol Trial 1 2 3 4 5 C-Phase Over-Vol Trial 1 2	tage High Setting Nominal (V) 156	Actual V 156 156.1 156.1 156.1 156.1 156.1 Actual V 156 156 156 156 156 156 156 156	15 55 60 50 75 75 75 75 75 75 75 75 75 75 75 75 75
Trial 1 2 3 4 5 B-Phase Over-Vol Trial 1 2 3 4 5 C-Phase Over-Vol Trial 1 2 3 4 5 2 3	High Setting Nominal (V) 156	Actual V 156 156.1 156.1 156.1 156.1 Actual V 156 156 156 156 156 156 156 156	15 55 60 50 75 75 Deviation (mV) 20 30 10 40 40 45 40 45 20 20 40
Trial 1 2 3 4 5 B-Phase Over-Vol Trial 1 2 3 4 5 C-Phase Over-Vol Trial 1 2 3 4 5 C-Phase Over-Vol Trial 1 2	tage High Setting Nominal (V) 156	Actual V 156 156.1 156.1 156.1 156.1 156.1 Actual V 156 156 156 156 156 156 156 156	15 55 60 50 75 75 75 75 75 75 75 75 75 75 75 75 75

3-Phase Over-Volt	age High Setting						
Trial	Nominal (V)	Actual V	Deviation (mV)				
1	156	156.1	80				
2	156	156.1	75				
3	156	156.1	60				
4	156	156.1	90				
5	156	156.1	55				
	5.2.1.3 Over-v	oltage Timing					
Low Time Delay							
Trial	Nominal (ms)	Actual (ms)	Deviation (ms)				
1	20	16.7	-3.3				
2	20	18	-2				
3	20	17	-3				
4	20	16.8	-3.2				
5	20	17.2	-2.8				
Mid Time Delay							
Trial	Nominal (s)	Actual (s)	Deviation (ms)				
1	1.52	1.525	4.8				
2	1.52	1.525	4.6				
3	1.52	1.525	5.1				
4	1.52	1.525	5.3				
5	1.52	1.525	4.9				
High Time Delay							
Trial	Nominal (s)	Actual (s)	Deviation (ms)				
1	3.02	3.025	4.6				
2	3.02	3.025	5.2				
3	3.02	3.025	4.7				
4	3.02	3.025	4.6				
5	3.02	3.025	5.4				

DISTRIBUTED GENERATION IEEE 1547.1 TESTING MATRIX	ABC Company Anytown, CH 3500 KW 5500 KW	IEEE 1547.1 Test 2 등 등 2 Compliance Device	C DELEMENT DELEMENT DE DESERVICE	I Temperature X X SEL/0004 Feary X	X X SEL7003+Relay Addendum test proceedure	X X SEL7003+ Reley Addendum test proceedure	X X SEL7003+ Relay Addendum/testproceedure	X X SEL7003+ Relay Addendumtestproceedure	X SEL7003+ Relay 7003_D5_20160034	×	X SEL70004 Reliny 7003_D5_20160334	A SEL/006+ Reley	X SELTOOG Reav 700G DS 20160014	X SEL7003+ Relay 7000_D5_2016003M Page 3M	X	X SEL7003+ Relay	X SEL7003+ Relay	fest of Paralleling Device X SEL/7005 - Relay Addendum test proceedure	X		X X SELTOG- Hellow	SEL7003+ Relay 7000_DS_20160034	×	**	X SEL7004-Relay	X	to Abnormal Veltage X SEL7003+ Relay Addendum test proceedure	X SEL7003+ Relay	tation Production X SEL 700G+ Relay Addendum test proceedure	est for Equipment with Synchronizing Disable X	×	X SEL700G+Relay	×		zhegjas Functonetry Addendum test progredure X SEL/7004 + Reary Addendum test progredure
DIST	780	IEEE 1547.1 Test	An event of the events of	Operational Temperature Stream Temperature	Overvoltage - Magnitude	Overwoltage - Trip Time	Undervoltage - Magnitude	Undervoltage - Trip Time	Overfrequency - Magnitude	Overfrequency - Trip Time	Underfrequency - Magnitude	Undertreguency - Trip Time Stochowissions, Mathod 4 - Vadation 4	Swithronization - Method 1 - Variation 2	Synchronization - Method 1 - Variation 3	Startup Current - Method 2	Protection from Electromagnetic Interference	Surge withstand Performance	Dielectric Test of Paralleling Device	Limitation of DC injection (inverters without XFMR)	Unintentional Blanding Test		Reverse-Power Time Test	Open Phase	Reconnect Following Abnormal Condition Disconnect Harmonics	Harmonics for Synchronous Generators	Harmonics for Induction Generators	Response to Abnormal Voltage	Response to Abnormal Frequency	Synchronization Production	Optional Test for Equipment with Synchronizing Disa	Verfications and inspections	Reverse-Power or Minimum Power Test	Non-islanding Functionality Test	Other Unintentional Islanding Test	Cease-to-Energize Functionality
	Fadity Name Fadity Location Total Generation	IEEE 1547.1 ID		0.12.1	5212	5213	5222	5.22.3	5.3.1.2	6.3.1.3	5322	0.52.5	5422	5.43.2	5.44.2	5.51.2	5.522	5.53.2	5.6.2	5.7.1.2	5.812	5.82.2	59.2	5.10.2	5.112.1	5.113.1	61.2	622	6.3.1.1	6.32.1	72	7.4.1	742	74.3	75.1
		Line	L T			4	-	9	T			2	12	13	14	15	16	17	18	<u>e</u> 2	3 2	8	23	2	8	27	23	8	30	31	32	8	đ	35	8

Example B

30

Example C

Port 2 Serial	830	Type Tests	
Wavelength: Ontion! Commenter Three	820 nm	Environmental Tests	
Optical Connector Type:	ST	Enclosure Protection:	IEC 60529:2001
Fiber Type: Link Dudent	Multimode	Enclosule Protection.	IEC 60529:2001 IP65 enclosed in panel 5.1.2.X
Link Budget:	8 dB		IP20 for terminals
Typical TX Power: BV Min Sensitivity:	–16 dBm –24 dBm		IP54 rated terminal dust protection assembly (SEL Part #915900170).
RX Min. Sensitivity: Fiber Size:	62.5/125 µm		10°C temperature derating applies to
Approximate Range:	~1 km		the temperature specifications of the
Data Rate:	5 Mb	Vibration Resistance:	relay. IEC 60255-21-1:1988.
Typical Fiber Attenuation:	-4 dB/km	violation Resistance.	Class 2 Endurance
			Class 2 Response
Optional Communications Ca			IEC 60255-2I-3:1993, Class 2
Option 1:	EIA-232 or EIA-485 communications card	Shock Resistance:	IEC 60255-21-2:1988, Class 1 Shock Withstand, Bump Class 2 Shock Response
Option 2:	DeviceNet communications card	Cold:	IEC 60068-2-1:2007
Communications Protocols		Cont.	-40°C, 16 hours
MIRRORED BITS, EVMSG,	CP/IP, Telnet, SNTP, IEC 61850, , C37.118 (synchrophasors), and	Damp Heat, Steady State:	IEC 60068-2-78:2001 40°C, 93% relative humidity, 4 days
DeviceNet.		Damp Heat, Cyclic:	IEC 60068-2-30:2005
Operating Temperature			25–55°C, 6 cycles, 95% relative humidity
IEC Performance Rating:	-40° to +85°C (-40° to +185°F)	Dry Heat:	IEC 60068-2-2:2007
	(per IEC/EN 60068-2-1 and 60068-2-2)	any reas.	85°C, 16 hours
NOTE: Not amplicable to U		Dielectric Strength and Impu	
NOTE: Not applicable to U NOTE: LCD contrast is intr	L applications paired for temperatures below -20°C and	Dielectric (HiPot):	IEC 60255-5:2000
above +70°C		entrear (raevy).	IEEE C37.90-2005
DeviceNet Communications			2.5 kVac on current inputs, voltage
Card Rating:	+60°C (140°F) maximum		inputs, contact I/O 2.0 kVac on analog inputs
Operating Environment			1.0 kVac on analog output
Pollution Degree:	2		2.83 kVdc on power supply
Overvoltage Category:	Π	Impulse:	IEC 60255-5:2000
Atmospheric Pressure:	80-110 kPa		0.5 J, 4.7 kV on power supply,
Relative Humidity:	5-95%, noncondensing		contact I/O, ac current and voltage inputs
Maximum Altitude:	2000 m		0.5 J, 530 V on analog outputs
Dimensions		RFI and Interference Tests	
	mm (7.56 in.) x 147.4 mm (5.80 in.)		5.5.1.2
	HIII (7.50 HL) & 147.4 HIII (5.80 HL)	EMC Immunity	
Weight		Electrostatic Discharge Immunity:	IEC 60255-22-2:2008 IEC 61000-4-2:2008
2.0 kg (4.4 lbs)		j-	Severity Level 4
Relay Mounting Screw (#8-3	2) Tightening Torque		8 kV contact discharge
Minimum:	1.4 Nm (12 in-lb)	Padiated PP Immunity	15 kV air discharge
Maximum:	1.7 Nm (15 in-lb)	Radiated RF Immunity:	IEC 60255-22-3:2007 IEC 61000-4-3:2002, 10 V/m
Terminal Connections			IEEE C37.90.2-1995, 35 V/m
Terminal Block		Fast Transient, Burst	IEC 60255-22-4:2008
Screw Size:	#6	Immunity:	IEC 61000-4-4:2004 4 kV @ 2.5 kHz
Ring Terminal Width:	0.310 inch maximum		2 kV @ 5.0 kHz for comm. ports
Terminal Block Tightening		Surge Immunity:	IEC 60255-22-5:2008
Minimum:	0.9 Nm (8 in-lb)		IEC 61000-4-5:2005
Maximum:	1.4 Nm (12 in-lb)		2 kV line-to-line 4 kV line-to-earth
Compression Plug Tighteni		Surge Withstand Capability	TEC 60355-22-1-1988
Minimum:	0.5 Nm (4.4 in-lb)	Immunity:	2.5 kV common mode 5.5.2.2
Maximum:			1.0 kV differential mode
	1.0 Nm (8.8 in-lb)		1 kV common mode on comm. ports IEEE C37.90.1-2002
Compression Plug Mountin Minimum:	g Ear Screw Tightening Torque		2.5 kV oscillatory
Maximum:	0.18 Nm (1.6 in-lb) 0.25 Nm (2.2 in lb)		4 kV fast transient
MAXIMUM	0.25 Nm (2.2 in-lb)	Conducted RF Immunity:	IEC 60255-22-6:2001 IEC 61000 4 6:2005 10 Virus
			IEC 61000-4-6:2006, 10 Vrms
		Magnotic Field Incompany	TEC 61000-4-9-2001
		Magnetic Field Immunity:	IEC 61000-4-8:2001 1000 A/m for 3 seconds

Schweitzer Engineering Laboratories, Inc.

Differential (87)

Unrestrained Pickup Range: 1.0-20.0 in per unit of TAP

Example C

EMC Emissions	
Conducted Emissions:	EN 55011:1998, Class A
Radiated Emissions:	EN 55011:1998, Class A
Electromagnetic Compatibi	lity
Product Specific:	EN 50263:1999
Processing Specification	ns and Oscillography
AC Voltage and Current Inputs:	32 samples per power system cycle
Analog Inputs:	4 samples per power system cycle
Frequency Tracking Range:	15-70 Hz
Digital Filtering	One-cycle cosine after low-pass analog filtering. Net filtering (analog plus digital) rejects dc and all harmonics greater than the fundamental.
Protection and Control Processing:	Processing interval is 4 times per power system cycle (except for math variables and analog quantities, which are processed every 100 ms). The protection elements 40, 51, and 78 are processed twice per cycle. Analog quantities for ms data are determined through use of data averaged over the previous 8 cycles.
Oscillography	
Length:	15, 64, 180 cycles
Sampling Rate:	32 samples per cycle unfiltered 4 samples per cycle filtered
Trigger:	Programmable with Boolean expression
Format:	ASCII and Compressed ASCII
Time-Stamp Resolution:	1 ms
Time-Stamp Accuracy:	±5 ms
Sequential Events Recorder	
Time-Stamp Resolution:	1 ms
Time-Stamp Accuracy (with respect to time	
source):	±5 ms
Relay Elements	
Instantaneous/Definite Time-	Overcurrent (50P, 50G, 50N, 50Q)
Pickup Setting Range, A sec	
5 A models:	0.50-96.00 A, 0.01 A steps
1 A models:	0.10-19.20 A, 0.01 A steps
Accuracy:	±5% of setting plus ±0.02 • I _{NOM} A secondary (steady-state pickup)
Time Delay:	0.00-400.00 seconds, 0.01 seconds steps, ±0.5% plus ±0.25 cyc 0.10-400.00 seconds, 0.01 seconds steps, ±0.5% plus ±0.25 cyc for 50Q

Restrained Pickup Range: 0.10-1.00 in per unit of TAP Pickup Accuracy (A secondary): 5 A Model: ±5% plus ±0.10 A 1 A Model: ±5% plus ±0.02 A TAP Range (A secondary): 5 A Model: 0.5-31.0 A 1 A Model: 0.1-6.2 A Unrestrained Element Pickup Time: 0.8/1.0/1.9 cycles (Min/Typ/Max) Restrained Element (With Harmonic Blocking) Pickup Time: 1.5/1.6/2.2 cycles (Min/Typ/Max) Restrained Element (With Harmonic Restraint) Pickup Time: 2.62/2.72/2.86 cycles (Min/Typ/Max) Harmonics Pickup Range (% of 5-100% fundamental): Pickup Accuracy (A secondary): 5 A Model: ±5% plus ±0.10 A of harmonic current 1 A Model: ±5% plus ±0.02 A of harmonic current Time Delay Accuracy: ±0.5% plus ±0.25 cycle Restricted Earth Fault (REF) Pickup Range (per unit of INOM of neutral current 0.05-3.00 per unit, 0.01 per-unit steps input, IN): Pickup Accuracy (A secondary): 5 A Model: ±5% plus ±0.10 A ±5% plus ±0.02 A 1 A Model: Timing Accuracy: Directional Output: 1.5 ±0.25 cyc ANSI Extremely Inverse ±5 cycles plus ±5% between 2 and 30 TOC Curve (U4 With 0.5 innihiples of pickup (within rated Time Dial): range of current) 5.2.2.X Undervoltage (27P, 27PP, 27V1, 27S) Pickup Range: Off. 2.0-300.0 V (2.0-520.0 V for phase-to-phase wye connected; 2.0–170.0 V positive-sequence, delta connected) Accuracy: ±5% of setting plus ±2 V Pickup/Dropout Time: <1.5 cycle Time Delay: 0.00-120.00 seconds, 0.01 second steps Accuracy: ±0.5% plus ±0.25 cycle 5.2.1.X Overvoltage (59P, 59PP, 59V1, 59S, 59Q, 59G) Off, 2.0-300.0 V (2.0-520.0 V for Pickup Range: phase-to-phase wye connected; 2.0–170.0 V positive sequence, delta connected) Pickup Range (59G, 59Q): Off, 2.0-200.0 V ±5% of setting plus ±2 V Accuracy: Pickup/Dropout Time: <1.5 cycle Time Delay: 0.00-120.00 seconds, 0.01 second steps Accuracy: ±0.5% plus ±0.25 cycle

31

	secondary (s
Time Delay:	0.00-400.00 s
	steps, ±0.5% 0.10-400.00 s
	steps, ±0.5%
Pickup/Dropout Time:	<1.5 cyc

Inverse Time-Overcurrent (51P, 51G, 51N, 51Q)

Pickup Setting Range, A secondary:

5 A models:	0.50-16.00 A, 0.01 A steps
1 A models:	0.10-3.20 A, 0.01 A steps
Accuracy:	±5% of setting plus ±0.02 • I _{NOM} A secondary (steady-state pickup)
Time Dial:	
US:	0.50-15.00, 0.01 steps
IEC:	0.05-1.00, 0.01 steps
Accuracy:	±1.5 cycles plus ±4% between 2 and 30 multiples of pickup (within rated range of current)

..

Example C

RTD Protection

32

Volts/Hertz (24) Definite-Time Element Pickup Range: Steady-State Pickup Accuracy: Pickup Time: Time-Delay Range: Time-Delay Accuracy: Reset Time Range: Inverse-Time Element Pickup Range: Steady-State Pickup Accuracy: Pickup Time: Curve: Eactor: Timing Accuracy: Reset Time Range:

Composite-Time Element

±1% of setpoint 25 ms @ 60 Hz (Max) 0.04-400.00 s ±0.1% plus ±4.2 ms @ 60 Hz 0.00-400.00 s 100-200% ±1% of setpoint

25 ms @ 60 Hz (Max)

0.5, 1.0, or 2.0

0.00-400.00 s

100-200%

0.1-10.0 s ±4% plus ±25 ms @ 60 Hz, for V/Hz above 1.2 multiple of pickup setting, and for operating times >4 s 0.00-400.00 s Combination of Definite-Time and Inverse-Time specifications User-Definable Curve Element 100-200% ±1% of setpoint 25 ms @ 60 Hz (Max)

58XX

Reset Time Range: Directional Power (32)

Steady-State Pickup Accuracy:

Pickup Range:

Pickup Time:

Directional Fower (3	(L)			J.0.A.A
Instantaneous/Def	inite Tim	e, 3 Phase El	lemen	ts
Type:		+W, -W, +V	AR, -1	VAR.
Pickup Settings Rat	nge, VA s	econdary:		
5 A Model:		1.0-6500.0 1	VA, 0.1	VA steps
1 A Model:		0.2-1300.0 1	VA, 0.1	VA steps
Accuracy:				tage secondary) and
				unity power factor
				ts and zero power e power element
		(5 A nomin	ual)	-
				tage secondary) and unity power factor
				ts and zero power
		factor for n	eactive	e power element
		(1 A nomin	ual)	
Pickup/Dropout Ti	ne:	<10 cycles		
Time Delay:		0.00-240.00 steps	secon	ds, 0.01 second
Accuracy:		±0.5% plus =	⊧0.25 o	tycle
Frequency (81)	5.3.)	CX		
Setting Range:		Off, 15.0-70	.0 Hz	
Accuracy:		±0.01 Hz (V	1 > 60	V)
Pickup/Dropout Tir	me:	<4 cycles		
Time Delay:		0.00-240.00 steps	secon	ds, 0.01 second
Accuracy:		±0.5% plus ±	-0.25	avrle
Accurcy.		-0.5% pitts =	0.23	.yeae

Setting Range: Off. 1-250°C Accuracy: ±2°C RTD Open-Circuit >250°C Detection: RTD Short-Circuit Detection: <-50°C RTD Types: PT100, NI100, NI120, CU10 25 ohm max. per lead RTD Lead Resistance: Update Rate: <3 s Noise Immunity on RTD To 1.4 Vac (peak) at 50 Hz or greater frequency Inputs: RTD Trip/Alarm Time Delay: Approx. 6 s Distance Element (21) Two zones of Compensator Distance elements with Load Encroachment block Reach Pickup Range: 5 A model: 0.1-100.0 ohms 1 A model: 0.5-500.0 ohms 5 A model: 0.0-10.0 ohms 1 A model: 0.0-50.0 ohms Offset Range: 5 A model: ±5% plus ±0.1 ohm 1 A mode: ±5% plus ±0.5 ohm Steady-State Impedance Accuracy: Pickup Time: 33 ms at 60 Hz (Max) Definite-Time Delay: 0.00-400.00 s Accuracy: ±0.1% plus ±0.25 cycle Minimum Phase Current: 5 A model: 0.5 A 1 A model: 0.1 A Maximum Torque Angle Range: 90-45°, 1° step Loss-of-Field Element (40) Two Mho Zones 5 A model: -50.0 to 0.0 ohms 1 A model: -250.0 to 0.0 ohms Zone 1 Offset: 5 A model: -50.0 to 50.0 ohms 1 A model: -250.0 to 250.0 ohms Zone 2 Offset: Zone 1 and Zone 2 Diameter: 5 A model: 0.1-100.0 ohms 1 A model: 0.5-500.0 ohms 5 A model: \pm 0.1 ohm plus Steady-State Impedance ±5% of (offset + diameter) Accuracy: 1 A model: ±0.5 ohm plus ±5% of (offset + diameter) Minimum Pos.-Seq. Signals: 5 A model: 0.25 V (V1), 0.25 A (11) 1 A model: 0.25 V (V1), 0.05 A (11) Directional Element Angle: -20.0° to 0.0° Pickup Time: 3 cycles (Max) Zone 1 and Zone 2 Definite-Time Delays: 0.00-400.00 s Accuracy: ±0.1% plus ± ½ cycle Voltage-Restrained Phase Time-Overcurrent Element (51V) Phase Pickup (A secondary): 5 A Model: 2.0-16.0 A 1 A Model: 0.4-3.2 A 5 A Model: ±5% plus ±0.10 A Steady-State Pickup 1 A Model: ±5% plus ±0.02 A Accuracy: Time Dials: US: 0.50-15.00, 0.01 steps IEC: 0.05-1.00, 0.01 steps ±4% plus ±1.5 cycles for current Accuracy: between 2 and 20 multiples of pickup (within rated range of current)

Linear Voltage Restraint Range:

0.125-1.000 per unit of VNOM

Example C

Voltage-Controlled Phase Tin	ne-Overcurrent Element (51C)	Double Blinder	
Phase Pickup (A secondary)		Outer Resistance Blinder:	5 A model: 0.2–100.0 ohms 1 A model: 1.0–500.0 ohms
Steady State Pickup Accuracy:	5 A Model: ±5% plus ±0.10 A 1 A Model: ±5% plus ±0.02 A	Inner Resistance Blinder:	5 A model: 0.1–50.0 ohms 1 A model: 0.5–250.0 ohms
Time Dials:	US: 0.50-15.00, 0.01 steps IEC: 0.05-1.00, 0.01 steps	Steady-State Impedance Accuracy:	5 A model: ±0.1 ohm plus ±5% of diameter
Accuracy:	±4% plus ±1.5 cycles for current between 2 and 20 multiples of pickup	Dec. See Current	 A model: ±0.5 ohm plus ±5% of diameter A model: 0.25–30.00 A
100 Percent Stator Ground P	(within rated range of current)	PosSeq. Current Supervision:	1 A model: 0.05-6.00 A
	otection (646)	Pickup Time:	3 cycles (Max)
Neutral Fundamental Overvoltage (64G1):	OFF, 0.1-150.0 V	Definite Time Delay: Trip Delay Range:	0.00-1.00 s, 0.01 s step 0.00-1.00 s, 0.01 s step
Steady-State Pickup	(6%) - her (0.1.17)	Trip Duration Range:	0.00-5.00 s, 0.01 s step
Accuracy:	±5% plus ±0.1 V	Definite-Time Timers:	$\pm 0.1\%$ plus $\pm \frac{1}{2}$ cycle
Pickup Time:	1.5 cycles (Max)		· ·
Definite-Time Delay:	0.00-400.00 s	Ground Differential Elements	
Accuracy: Third-Harmonic Voltage	±0.1% plus ±0.25 cycle	Ground Differential Pickup:	5 A Model: 0.10*CTR/CTRN - 15.00 A
Differential or Third- Harmonic Neutral			1 A Model: 0.02*CTR/CTRN - 3.00 A
Undervoltage Pickup 64G2 Steady-State Pickup	: 0.1–20.0 V		(Ratio CTR/CTRN must be within 1.0-40.0)
Accuracy: Third-Harmonic Voltage	±5% plus ±0.1 V	Steady-State Pickup Accuracy:	5 A Model: ±5% plus ±0.10 A 1 A Model: ±5% plus ±0.02 A
Differential Ratio Setting		Pickup Time:	1.5 cycles (Max)
Range	0.0 to 5.0	Time Delay Range:	0.00-5.00 s
Pickup Time:	3 cycles (Max)	Time Delay Accuracy:	±0.5% plus ±% cycle
Definite-Time Delay:	0.00 400.00 -	THE DEAY ACCURCY.	
Demme-Time Demy.	0.00-400.00 s		502
Accuracy:	±0.1% plus ±0.25 cycle	Negative-Sequence Overcurre	ent Elements (46) 5.9.2
Accuracy: Field Ground Protection (64F	±0.1% plus ±0.25 cycle)	Negative-Sequence Overcurro Definite-Time and Inverse- Time NegSeq. I ² Pickup:	ent Elements (46) 5.9.2 2%-100% of generator rated secondary current
Accuracy: Field Ground Protection (64F (Requires SEL-2664 Field Gro	±0.1% plus ±0.25 cycle)	Negative-Sequence Overcurro Definite-Time and Inverse- Time NegSeq. I ² Pickup: Generator Rated Secondary	ent Elements (46) 5.9.2 2%-100% of generator rated secondary current 5 A Model: 1.0-10.0 A secondary
Accuracy: Field Ground Protection (64F	±0.1% plus ±0.25 cycle)	Negative-Sequence Overcurro Definite-Time and Inverse- Time NegSeq. 1 ² Pickup: Generator Rated Secondary Current:	ent Elements (46) 5.9.2 2%-100% of generator rated secondary current 5 A Model: 1.0-10.0 A secondary 1 A Model: 0.2-2.0 A secondary
Accuracy: Field Ground Protection (64F (Requires SEL-2664 Field Gro Field Ground Protection	±0.1% plus ±0.25 cycle) und Module)	Negative-Sequence Overcurro Definite-Time and Inverse- Time NegSeq. 1 ² Pickup: Generator Rated Secondary Current: Steady-State Pickup Accuracy:	ent Elements (46) 5.9.2 2%-100% of generator rated secondary current 5 A Model: 1.0-10.0 A secondary 1 A Model: 0.2-2.0 A secondary 5 A Model: ±0.025 A plus ±3% 1 A Model: ±0.005 A plus ±3%
Accuracy: Field Ground Protection (64F (Requires SEL-2664 Field Gro Field Ground Protection Element:	±0.1% plus ±0.25 cycle) und Module) 0.5–200.0 kilohms, 0.1 kilohm step ±5% plus ±500 ohms for	Negative-Sequence Overcurre Definite-Time and Inverse- Time NegSeq. I ² Pickup: Generator Rated Secondary Current: Steady-State Pickup Accuracy: Pickup Time: Definite-Time Delay Setting	ent Elements (46) 5.9.2 2%=100% of generator rated secondary current 5 A Model: 1.0–10.0 A secondary 5 A Model: 0.2–2.0 A secondary 5 A Model: 0.2–2.0 A secondary 5 A Model: ±0.025 A plus ±3% 1 A Model: ±0.005 A plus ±3% 50 ms at 60 Hz (max) 50 ms at 60 Hz (max)
Accuracy: Field Ground Protection (64F (Requires SEL-2664 Field Gro Field Ground Protection Element:	<pre>#0.1% plus ±0.25 cycle) und Module) 0.5-200.0 kilohms, 0.1 kilohm step ±5% plus ±500 ohms for 48 ± VF ± 825 Vdc ±5% plus ±20 kilohms for 825 < VF ± 1500 Vdc (VF is the generator field winding</pre>	Negative-Sequence Overcurre Definite-Time and Inverse- Time NegSeq. I ² Pickup: Generator Rated Secondary Current: Steady-State Pickup Accuracy: Pickup Time: Definite-Time Delay Setting Range: Maximum Definite-Time	ent Elements (46) 5.9.2 2%-100% of generator rated secondary current 5 A Model: 1.0-10.0 A secondary 5 A Model: 0.2-2.0 A secondary 3 A Model: 0.2-2.0 A secondary 5 A Model: 0.2-2.0 A secondary 1 A Model: ±0.005 A plus ±3% 50 ms at 60 Hz (max) 0.02-999.90 s
Accuracy: Field Ground Protection (64F (Requires SEL-2664 Field Gro Field Ground Protection Element:	<pre>#0.1% plus ±0.25 cycle) und Module) 0.5-200.0 kilohms, 0.1 kilohm step ±5% plus ±500 ohms for 48 ± VF ± 825 Vdc ±5% plus ±20 kilohms for 825 < VF ± 1500 Vdc (VF is the generator field winding excitation dc voltage) 2 s if the injection frequency in the</pre>	Negative-Sequence Overcurre Definite-Time and Inverse- Time NegSeq. I ² Pickup: Generator Rated Secondary Current: Steady-State Pickup Accuracy: Pickup Time: Definite-Time Delay Setting Range:	ent Elements (46) 5.9.2 2%=100% of generator rated secondary current 5 A Model: 1.0–10.0 A secondary 5 A Model: 0.2–2.0 A secondary 5 A Model: 0.2–2.0 A secondary 5 A Model: ±0.025 A plus ±3% 1 A Model: ±0.005 A plus ±3% 50 ms at 60 Hz (max) 50 ms at 60 Hz (max)
Accuracy: Field Ground Protection (64F (Requires SEL-2664 Field Gro Field Ground Protection Element: Pickup Accuracy:	<pre>#0.1% plus ±0.25 cycle) und Module) 0.5-200.0 kilohms, 0.1 kilohm step ±5% plus ±500 ohms for 48 ± VF ± 825 Vdc ±5% plus ±20 kilohms for 825< VF ± 1500 Vdc (VF is the generator field winding evcitation dc voltage) 2 s if the injection frequency in the SEL-2664 is selected at 1 Hz</pre>	Negative-Sequence Overcurre Definite-Time and Inverse- Time NegSeq. I ² Pickup: Generator Rated Secondary Current: Steady-State Pickup Accuracy: Pickup Time: Definite-Time Delay Setting Range: Maximum Definite-Time Delay Accuracy:	ent Elements (46) 5.9.2 2%-100% of generator rated secondary current 5 A Model: 1.0-10.0 A secondary 5 A Model: 0.2-2.0 A secondary 3 A Model: 0.2-2.0 A secondary 5 A Model: 0.2-2.0 A secondary 1 A Model: ±0.005 A plus ±3% 50 ms at 60 Hz (max) 0.02-999.90 s
Accuracy: Field Ground Protection (64F (Requires SEL-2664 Field Gro Field Ground Protection Element: Pickup Accuracy:	<pre>#0.1% plus ±0.25 cycle) und Module) 0.5-200.0 kilohms, 0.1 kilohm step ±5% plus ±500 ohms for 48 ± VF ± 825 Vdc ±5% plus ±20 kilohms for 825 < VF ± 1500 Vdc (VF is the generator field winding excitation dc voltage) 2 s if the injection frequency in the</pre>	Negative-Sequence Overcurro Definite-Time and Inverse- Time NegSeq. 1 ² Pickup: Generator Rated Secondary Current: Steady-State Pickup Accuracy: Pickup Time: Definite-Time Delay Setting Range: Maximum Definite-Time Delay Accuracy: Inverse-Time Element Time	ent Elements (46) 5.9.2 2%-100% of generator rated secondary current 5.4 Model: 1.0-10.0 A secondary 5 A Model: 1.0-10.0 A secondary 1.4 Model: 0.2-2.0 A secondary 5 A Model: ±0.025 A plus ±3% 1.4 Model: ±0.005 A plus ±3% 50 ms at 60 Hz (max) 0.02-999.90 s ±0.1% plus ±4.2 ms at 60 Hz 1.2 ms at 60 Hz
Accuracy: Field Ground Protection (64F (Requires SEL-2664 Field Gro Field Ground Protection Element: Pickup Accuracy: Pickup Time: Definite-Time Delay:	 ±0.1% plus ±0.25 cycle) und Module) 0.5-200.0 kilohms, 0.1 kilohm step ±5% plus ±500 ohms for 48 ± VF ± 825 Vdc ±5% plus ±20 kilohms for 825 < VF ± 1500 Vdc (VF is the generator field winding excitation dc voltage) 2 s if the injection frequency in the SEL-2664 is selected at 1 Hz 8 s if the injection frequency in the 	Negative-Sequence Overcurro Definite-Time and Inverse- Time NegSeq. 1 ² Pickup: Generator Rated Secondary Current: Steady-State Pickup Accuracy: Pickup Time: Definite-Time Delay Setting Range: Maximum Definite-Time Delay Accuracy: Inverse-Time Element Time Dial:	ent Elements (46) 5.9.2 2%-100% of generator rated secondary current 5.4 Model: 1.0-10.0 A secondary 5 A Model: 1.0-10.0 A secondary 1.4 Model: 0.2-2.0 A secondary 5 A Model: ±0.025 A plus ±3% 1.4 Model: ±0.005 A plus ±3% 50 ms at 60 Hz (max) 0.02-999.90 s ±0.1% plus ±4.2 ms at 60 Hz K = 1 to 100 s
Accuracy: Field Ground Protection (64F (Requires SEL-2664 Field Gro Field Ground Protection Element: Pickup Accuracy: Pickup Time:	 ±0.1% plus ±0.25 cycle) und Module) 0.5-200.0 kilohms, 0.1 kilohm step ±5% plus ±500 ohms for 48 ± VF ± 825 Vdc ±5% plus ±20 kilohms for 825 < VF ± 1500 Vdc (VF is the generator field winding excitation dc voltage) 2 s if the injection frequency in the SEL-2664 is selected at 1 Hz 8 s if the injection frequency in the SEL-2664 is selected at 0.25 Hz 	Negative-Sequence Overcurro Definite-Time and Inverse- Time NegSeq. 1 ² Pickup: Generator Rated Secondary Current: Steady-State Pickup Accuracy: Pickup Time: Definite-Time Delay Setting Range: Maximum Definite-Time Delay Accuracy: Inverse-Time Element Time Dial: Linear Reset Time: Inverse-Time Timing Accuracy:	ent Elements (46) 5.9.2 2%-100% of generator rated secondary current 5.4 Model: 1.0-10.0 A secondary 5 A Model: 1.0-10.0 A secondary 1.4 Model: 0.2-2.0 A secondary 5 A Model: ±0.025 A plus ±3% 1.4 Model: ±0.005 A plus ±3% 50 ms at 60 Hz (max) 0.02-999.90 s ±0.1% plus ±4.2 ms at 60 Hz K = 1 to 100 s 240 s fixed ±4% plus ±50 ms at 60 Hz for I ₂ above 1.05 multiples of pickup
Accuracy: Field Ground Protection (64F (Requires SEL-2664 Field Gro Field Ground Protection Element: Pickup Accuracy: Pickup Time: Definite-Time Delay: Maximum Definite-Time Delay Accuracy:	 ±0.1% plus ±0.25 cycle und Module) 0.5-200.0 kilohms, 0.1 kilohm step ±5% plus ±500 ohms for 48 ± VF ± 825 Vdc ±5% plus ±20 kilohms for 825 < VF ± 1500 Vdc (VF is the generator field winding excitation dc voltage) 2 s if the injection frequency in the SEL-2664 is selected at 1 Hz 8 s if the injection frequency in the SEL-2664 is selected at 0.25 Hz 0.0-99.0 s 	Negative-Sequence Overcurro Definite-Time and Inverse- Time NegSeq. 1 ² Pickup: Generator Rated Secondary Current: Steady-State Pickup Accuracy: Pickup Time: Definite-Time Delay Setting Range: Maximum Definite-Time Delay Accuracy: Inverse-Time Element Time Dial: Linear Reset Time: Inverse-Time Timing Accuracy: Rate-of-Change of Frequency	ent Elements (46) 5.9.2 2%-100% of generator rated secondary current 5.4 Model: 1.0-10.0 A secondary 5 A Model: 1.0-10.0 A secondary 1 A Model: 0.2-2.0 A secondary 5 A Model: ±0.025 A plus ±3% 1 A Model: ±0.005 A plus ±3% 50 ms at 60 Hz (max) 0.02-999.90 s ±0.1% plus ±4.2 ms at 60 Hz K = 1 to 100 s 240 s fixed ±4% plus ±50 ms at 60 Hz for I ₂ above 1.05 multiples of pickup (81R) 100 s
Accuracy: Field Ground Protection (64F (Requires SEL-2664 Field Gro Field Ground Protection Element: Pickup Accuracy: Pickup Time: Definite-Time Delay: Maximum Definite-Time Delay Accuracy: Out-of-Step Element (78)	<pre>#0.1% plus ±0.25 cycle) und Module) 0.5-200.0 kilohms, 0.1 kilohm step ±5% plus ±500 ohms for 48 ± VF ± 825 Vdc ±5% plus ±20 kilohms for 825 < VF ± 1500 Vdc (VF is the generator field winding excitation dc voltage) 2 s if the injection frequency in the SEL-2664 is selected at 1 Hz 8 s if the injection frequency in the SEL-2664 is selected at 0.25 Hz 0.0-99.0 s ±0.5% plus ±5 ms</pre>	Negative-Sequence Overcurro Definite-Time and Inverse- Time Neg-Seq. 1 ² Pickup: Generator Rated Secondary Current: Steady-State Pickup Accuracy: Pickup Time: Definite-Time Delay Setting Range: Maximum Definite-Time Delay Accuracy: Inverse-Time Element Time Dial: Linear Reset Time: Inverse-Time Timing Accuracy: Rate-of-Change of Frequency Pickup Setting Range:	ent Elements (46) 5.9.2 2%-100% of generator rated secondary current 5.4 Model: 1.0-10.0 A secondary 5 A Model: 1.0-10.0 A secondary 1.4 Model: 0.2-2.0 A secondary 5 A Model: ±0.025 A plus ±3% 1.4 Model: ±0.005 A plus ±3% 50 ms at 60 Hz (max) 0.02-999.90 s ±0.1% plus ±4.2 ms at 60 Hz K = 1 to 100 s 240 s fixed ±4% plus ±50 ms at 60 Hz for I ₂ above 1.05 multiples of pickup (81R) Off. 0.10-15.00 Hz/s
Accuracy: Field Ground Protection (64F (Requires SEL-2664 Field Gro Field Ground Protection Element: Pickup Accuracy: Pickup Time: Definite-Time Delay: Maximum Definite-Time Delay Accuracy:	<pre>#0.1% plus ±0.25 cycle) und Module) 0.5-200.0 kilohms, 0.1 kilohm step ±5% plus ±500 ohms for 48 ± VF ± 825 Vdc ±5% plus ±20 kilohms for 825 < VF ± 1500 Vdc (VF is the generator field winding excitation frequency in the SEL-2664 is selected at 1 Hz 8 s if the injection frequency in the SEL-2664 is selected at 0.25 Hz 0.0-99.0 s ±0.5% plus ±5 ms 5 A model: 0.1-100.0 ohms</pre>	Negative-Sequence Overcurro Definite-Time and Inverse- Time NegSeq. 1 ² Pickup: Generator Rated Secondary Current: Steady-State Pickup Accuracy: Pickup Time: Definite-Time Delay Setting Range: Maximum Definite-Time Delay Accuracy: Inverse-Time Element Time Dial: Linear Reset Time: Inverse-Time Timing Accuracy: Rate-of-Change of Frequency Pickup Setting Range: Accuracy:	5.9.2 2%-100% of generator rated secondary current 5 A Model: 1.0-10.0 A secondary 1 A Model: 0.2-2.0 A secondary 5 A Model: 1.0-10.0 A secondary 1 A Model: 0.2-2.0 A secondary 5 A Model: ±0.025 A plus ±3% 1 A Model: ±0.005 A plus ±3% 50 ms at 60 Hz (max) 0.02-999.90 s ±0.1% plus ±4.2 ms at 60 Hz K = 1 to 100 s 240 s fixed ±4% plus ±50 ms at 60 Hz for I ₂ above 1.05 multiples of pickup (81R) Orf, 0.10-15.00 Hz/s ±100 mHz/s plus ±3.33% of pickup
Accuracy: Field Ground Protection (64F (Requires SEL-2664 Field Gro Field Ground Protection Element: Pickup Accuracy: Pickup Time: Definite-Time Delay: Maximum Definite-Time Delay Accuracy: Out-of-Step Element (78)	<pre>#0.1% plus ±0.25 cycle) und Module) 0.5-200.0 kilohms, 0.1 kilohm step ±5% plus ±500 ohms for 48 ± VF ± 825 Vdc ±5% plus ±20 kilohms for 825 < VF ± 1500 Vdc (VF is the generator field winding excitation dc voltage) 2 s if the injection frequency in the SEL-2664 is selected at 1 Hz 8 s if the injection frequency in the SEL-2664 is selected at 0.25 Hz 0.0-99.0 s ±0.5% plus ±5 ms</pre>	Negative-Sequence Overcurro Definite-Time and Inverse- Time Neg-Seq. 1 ² Pickup: Generator Rated Secondary Current: Steady-State Pickup Accuracy: Pickup Time: Definite-Time Delay Setting Range: Maximum Definite-Time Delay Accuracy: Inverse-Time Element Time Dial: Linear Reset Time: Inverse-Time Timing Accuracy: Rate-of-Change of Frequency Pickup Setting Range:	ent Elements (46) 5.9.2 2%-100% of generator rated secondary current 5.4 Model: 1.0-10.0 A secondary 5 A Model: 1.0-10.0 A secondary 1.4 Model: 0.2-2.0 A secondary 5 A Model: ±0.025 A plus ±3% 1.4 Model: ±0.005 A plus ±3% 50 ms at 60 Hz (max) 0.02-099.90 s ±0.1% plus ±4.2 ms at 60 Hz K = 1 to 100 s 240 s fixed ±4% plus ±50 ms at 60 Hz for I ₂ above 1.05 multiples of pickup 6(81R) Off. 0.10-15.00 Hz/s ±100 mHz/s plus ±3.33% of pickup INC, DEC, ABS 3-30 cycles, depending on pickup
Accuracy: Field Ground Protection (64F (Requires SEL-2664 Field Gro Field Ground Protection Element: Pickup Accuracy: Pickup Time: Definite-Time Delay: Maximum Definite-Time Delay Accuracy: Out-of-Step Element (78) Forward Reach: Reverse Reach:	<pre>#0.1% plus ±0.25 cycle) und Module) 0.5-200.0 kilohms, 0.1 kilohm step ±5% plus ±500 ohms for 48 ± VF ± 825 Vdc ±5% plus ±20 kilohms for 825 < VF ± 1500 Vdc (VF is the generator field winding excitation dc voltage) 2 s if the injection frequency in the SEL-2664 is selected at 1 Hz 8 s if the injection frequency in the SEL-2664 is selected at 0.25 Hz 0.0-99.0 s ±0.5% plus ±5 ms 5 A model: 0.1-100.0 ohms 1 A model: 0.5-500.0 ohms 5 A model: 0.1-100.0 ohms</pre>	Negative-Sequence Overcurro Definite-Time and Inverse- Time NegSeq. I ² Pickup: Generator Rated Secondary Current: Steady-State Pickup Accuracy: Pickup Time: Definite-Time Delay Setting Range: Maximum Definite-Time Delay Accuracy: Inverse-Time Element Time Dial: Linear Reset Time: Inverse-Time Timing Accuracy: Rate-of-Change of Frequency Pickup Setting Range: Accuracy: Trend Setting: Pickup/Dropout Time:	5.9.2 2%-100% of generator rated secondary current 5 A Model: 1.0-10.0 A secondary 1 A Model: 0.2-2.0 A secondary 5 A Model: 1.0-10.0 A secondary 1 A Model: 0.2-2.0 A secondary 5 A Model: ±0.025 A plus ±3% 1 A Model: ±0.005 A plus ±3% 50 ms at 60 Hz (max) 0.02-999.90 s ±0.1% plus ±4.2 ms at 60 Hz K = 1 to 100 s 240 s fixed ±4% plus ±50 ms at 60 Hz for I ₂ above 1.05 multiples of pickup 7 (81R) Off, 0.10-15.00 Hz/s ±100 mHz/s plus ±3.33% of pickup INC, DEC, ABS 3-30 cycles, depending on pickup setting
Accuracy: Field Ground Protection (64F (Requires SEL-2664 Field Gro Field Ground Protection Element: Pickup Accuracy: Pickup Time: Definite-Time Delay: Maximum Definite-Time Delay Accuracy: Out-of-Step Element (78) Forward Reach: Reverse Reach: Single Blinder	<pre>#0.1% plus ±0.25 cycle) und Module) 0.5-200.0 kilohms, 0.1 kilohm step ±5% plus ±500 ohms for 48 ± VF ± 825 Vdc ±5% plus ±20 kilohms for 825 < VF ± 1500 Vdc (VF is the generator field winding excitation dc voltage) 2 s if the injection frequency in the SEL-2664 is selected at 1 Hz 8 s if the injection frequency in the SEL-2664 is selected at 0.25 Hz 0.0-99.0 s ±0.5% plus ±5 ms 5 A model: 0.1-100.0 ohms 1 A model: 0.5-500.0 ohms 1 A model: 0.5-500.0 ohms</pre>	Negative-Sequence Overcurro Definite-Time and Inverse- Time NegSeq. 1 ² Pickup: Generator Rated Secondary Current: Steady-State Pickup Accuracy: Pickup Time: Definite-Time Delay Setting Range: Maximum Definite-Time Delay Accuracy: Inverse-Time Element Time Dial: Linear Reset Time: Inverse-Time Timing Accuracy: Rate-of-Change of Frequency Pickup Setting Range: Accuracy: Trend Setting:	ent Elements (46) 5.9.2 2%-100% of generator rated secondary current 5.4 Model: 1.0-10.0 A secondary 5 A Model: 1.0-10.0 A secondary 1.4 Model: 0.2-2.0 A secondary 5 A Model: ±0.025 A plus ±3% 1.4 Model: ±0.005 A plus ±3% 50 ms at 60 Hz (max) 0.02-099.90 s ±0.1% plus ±4.2 ms at 60 Hz K = 1 to 100 s 240 s fixed ±4% plus ±50 ms at 60 Hz for I ₂ above 1.05 multiples of pickup 6(81R) Off. 0.10-15.00 Hz/s ±100 mHz/s plus ±3.33% of pickup INC, DEC, ABS 3-30 cycles, depending on pickup
Accuracy: Field Ground Protection (64F (Requires SEL-2664 Field Gro Field Ground Protection Element: Pickup Accuracy: Pickup Time: Definite-Time Delay: Maximum Definite-Time Delay Accuracy: Out-of-Step Element (78) Forward Reach: Reverse Reach:	<pre>#0.1% plus ±0.25 cycle) und Module) 0.5-200.0 kilohms, 0.1 kilohm step ±5% plus ±500 ohms for 48 ± VF ± 825 Vdc ±5% plus ±20 kilohms for 825 < VF ± 1500 Vdc (VF is the generator field winding excitation dc voltage) 2 s if the injection frequency in the SEL-2664 is selected at 1 Hz 8 s if the injection frequency in the SEL-2664 is selected at 0.25 Hz 0.0-99.0 s ±0.5% plus ±5 ms 5 A model: 0.1-100.0 ohms 1 A model: 0.5-500.0 ohms 5 A model: 0.1-100.0 ohms</pre>	Negative-Sequence Overcurre Definite-Time and Inverse- Time Neg-Seq. I ² Pickup: Generator Rated Secondary Current: Steady-State Pickup Accuracy: Pickup Time: Definite-Time Delay Setting Range: Maximum Definite-Time Delay Accuracy: Inverse-Time Element Time Dial: Linear Reset Time: Inverse-Time Timing Accuracy: Rate-of-Change of Frequency Pickup Setting Range: Accuracy: Trend Setting: Pickup/Dropout Time: Pickup/Dropout Delay	5.9.2 2%-100% of generator rated secondary current 5 A Model: 1.0-10.0 A secondary 1 A Model: 0.2-2.0 A secondary 5 A Model: 40.025 A plus ±3% 1 A Model: ±0.025 A plus ±3% 50 ms at 60 Hz (max) 0.02-999.90 s ±0.1% plus ±4.2 ms at 60 Hz K = 1 to 100 s 240 s fixed ±4% plus ±50 ms at 60 Hz for I ₂ above 1.05 multiples of pickup (81R) Off, 0.10-15.00 Hz/s ±100 mHz/s plus ±3.33% of pickup INC, DEC, ABS 3-30 cycles, depending on pickup setting 0.10-60.00/0.00-60.00 s, 01 s increments
Accuracy: Field Ground Protection (64F (Requires SEL-2664 Field Gro Field Ground Protection Element: Pickup Accuracy: Pickup Time: Definite-Time Delay: Maximum Definite-Time Delay Accuracy: Out-of-Step Element (78) Forward Reach: Reverse Reach: Single Blinder	<pre>#0.1% plus ±0.25 cycle) und Module) 0.5-200.0 kilohms, 0.1 kilohm step ±5% plus ±500 ohms for 48 ± VF ± 825 Vdc ±5% plus ±20 kilohms for 825 < VF ± 1500 Vdc (VF is the generator field winding excitation dc voltage) 2 s if the injection frequency in the SEL-2664 is selected at 1 Hz 8 s if the injection frequency in the SEL-2664 is selected at 0.25 Hz 0.0-99.0 s ±0.5% plus ±5 ms 5 A model: 0.1-100.0 ohms 1 A model: 0.5-500.0 ohms 5 A model: 0.1-50.0 ohms</pre>	Negative-Sequence Overcurro Definite-Time and Inverse- Time Neg-Seq. 1 ² Pickup: Generator Rated Secondary Current: Steady-State Pickup Accuracy: Pickup Time: Definite-Time Delay Setting Range: Maximum Definite-Time Delay Accuracy: Inverse-Time Element Time Dial: Linear Reset Time: Inverse-Time Timing Accuracy: Rate-of-Change of Frequency Pickup Setting Range: Accuracy: Trend Setting: Pickup/Dropout Time: Pickup/Dropout Delay Range: Voltage Supervision (Positive	5.9.2 2%-100% of generator rated secondary current 5 A Model: 1.0-10.0 A secondary 1 A Model: 0.2-2.0 A secondary 5 A Model: 40.025 A plus ±3% 1 A Model: ±0.025 A plus ±3% 50 ms at 60 Hz (max) 0.02-999.90 s ±0.1% plus ±4.2 ms at 60 Hz K = 1 to 100 s 240 s fixed ±4% plus ±50 ms at 60 Hz for I ₂ above 1.05 multiples of pickup (81R) Off, 0.10-15.00 Hz/s ±100 mHz/s plus ±3.33% of pickup INC, DEC, ABS 3-30 cycles, depending on pickup setting 0.10-60.00/0.00-60.00 s, 01 s increments

33

34

Example C

Synchronism Check (25Y) for	Tie Breaker	Frequency
	VAY, VBY, VCY, VABY, VBCY,	Frequency
Source:	VCAY or angle from VAY or VABY	Frequency
Voltage Window High	0.00.000.00.00	Kick Pulse
Setting Range:	0.00-300.00 V	Kick Pulse
Voltage Window Low Setting Range:	0.00-300.00 V	Kick Pulse
Steady-State Voltage	±5% plus ±2.0 V (over the range	Voltage Ma
Accuracy:	of 12.5-300 V)	Voltage Co
Maximum Percentage Voltage Difference:	1.0-15.0%	Raise:
Maximum Slip Frequency:	-0.05 Hz to 0.50 Hz	Lower:
Steady-State Slip Accuracy:	±0.02 Hz	This of Co
Close Acceptance Angle 1,		Voltage Sy Voltage Ad
2:	0-80°	(Control
Breaker Close Delay:	0.001-1.000 s	Voltage Pu
Steady-State Angle Accuracy:	±2° Conceptor Breather 5.4.X.X	Voltage Co Minimum
Synchronism Check (25X) for	Generator Breaker 0.4.A.A	Voltage Co
	VAX, VBX, VCX, VABX, VBCX,	Maximur
Source:	VCAX or angle from VAX or VABX	Timing Ac
Voltage Window High Setting Range:	0.00-300.00 V	Metering A
Voltage Window Low Setting	0.00-000.00 0	Accuracies
Range:	0.00-300.00 V	within (0
Steady-State Voltage	±5% plus ±2.0 V (over the range of	50-250 V
Accuracy:	12.5-300 V)	Phase Curr
Maximum Percentage Voltage Difference:	1.0-15.0%	
Minimum Slip Frequency:	-1.00 Hz to 0.99 Hz	3-Phase An
Maximum Slip Frequency:	-0.99 Hz to 1.00 Hz	Differentia
Steady-State Slip Accuracy:	±0.02 Hz	Current Ha
Close Acceptance Angle 1, 2:	0-80°	Culterin
Z. Target Close Angle:	-15 to 15°	IG (Residu
Breaker Close Delay:	0.001-1.000 s	
Close Failure Angle:	3–120°	IN (Neutra
Steady-State Angle	5-120	
Accuracy:	±2°	312 Negati
Generator Thermal Model (49	D	Current:
Thermal Overload Trip	30-250% of Full Load Current	System Fre
Pickup Level:	(Full Load Current INOM range: 0.2-2.0*I _{NOM} , where I _{NOM} = 1 A or	Line-to-Li
TCLI Alarm Dislam Lands	5 A) 50,00% Thermal Conscitution	3-Phase A
TCU Alarm Pickup Level: Time-Constant Range (2):	50-99% Thermal Capacity Used 1-1000 minutes	Line Volt
	±(5% + 25 ms) at multiple-of-pickup	Line-to-Gr
Time Accuracy Pickup/ Dropout Time:	22, 50/60 Hz (pre-load = 0)	
Autosynchronizing		3-Phase As Ground V
Frequency Matching		Voltage Ha
Speed (Frequency) Control O	utputs:	3V2 Negat
Raise:	Digital Output, adjustable pulse	Voltage: Real 3-Pha
Lower	duration and interval	Reactive 3
Lower.	Digital Output, adjustable pulse duration and interval	Power (k
Frequency Synchronism		Apparent 3
Timer:	5-3600 s, 1 s increments	Power (k
Frequency Adjustment Rate:	0.01-10.00 Hz/s, 0.01 Hz/s increment	Power Fact RTD Temp

1–120 s, 1 s increment
0.10-60.00 s, 0.01 s increment
0.10-60.00 s, 0.01 s increment
1-120 s, 1 s increments
0.02-2.00 s, 0.01 s increments
0.02-2.00 s, 0.01 s increments
Digital Output, adjustable pulse duration and interval
Digital Output, adjustable pulse duration and interval
5-3600 s, 1 s increments
0.01-30.00 V/s, 0.01 V/s increment
1-120 s, 1 s increment
0.10-60.00 s, 0.01 s increment
0.10-60.00 s, 0.01 s increment
±0.5% plus ±¼ cyc

Accuracy

actering Accorder		
Accuracies are specified at 2 within (0.2-20.0) • I _{NOM} A 50-250 V secondary unles	0°C, nominal frequency, ac currents A secondary, and ac voltages within s otherwise noted.	
Phase Currents:	±1% of reading, ±1° (±2.5° at 0.2–0.5 A for relays with I _{NOM} = 1 A)	
3-Phase Average Current:	±1% of reading	
Differential Quantities:	±5% of reading plus ±0.1 A (5 A nominal), ±0.02 A (1 A nominal)	
Current Harmonics:	±5% of reading plus ±0.1 A (5 A nominal), ±0.02 A (1 A nominal)	
IG (Residual Current):	±2% of reading, ±2° (±5.0° at 0.2–0.5 A for relays with I _{NOM} = 1 A)	
IN (Neutral Current):	$\pm 1\%$ of reading, $\pm 1^{\circ}$ ($\pm 2.5^{\circ}$ at 0.2–0.5 A for relays with $I_{NOM} = 1$ A)	
312 Negative-Sequence Current:	±2% of reading	
System Frequency:	±0.01 Hz of reading for frequencies within 20-70 Hz (V1 > 60 V)	
Line-to-Line Voltages:	±1% of reading, ±1° for voltages within 24-264 V	
3-Phase Average Line-to- Line Voltage:	±1% of reading for voltages within 24–264 V	
Line-to-Ground Voltages:	±1% of reading, ±1° for voltages within 24-264 V	
3-Phase Average Line-to- Ground Voltages:	±1% of reading for voltages within 24-264 V	
Voltage Harmonics:	±5% of reading plus ±0.5 V	
3V2 Negative-Sequence Voltage:	±2% of reading for voltages within 24-264 V	
Real 3-Phase Power (kW):	$\pm 3\%$ of reading for $0.10 \le pf \le 1.00$	
Reactive 3-Phase Power (kVAR):	±3% of reading for 0.00 < pf < 0.90	
Apparent 3-Phase Power (kVA):	±3% of reading	
Power Factor:	±2% of reading	
RTD Temperatures:	±2°C	

Example D

	DISTRIBUTED GENERATION IEEE 1547.1 TESTING DOCUMENTATION INDEX
Facility I	lame:
Facility L	ocation:
Total Ge	neration:
DG Туре	
Date:	
ID	Document
A	Brand XYZ, Model 123 Converter Test (IEC XXXXX-XX)
В	Brand ABC, Model 456 Turbine Type Test – Design Evaluation
С	Brand ABC, Model 456 Turbine Type Test – Annex to Design
D	Brand XYZ, Model 123 Converter Test (UL XXXX)
E	Brand DEF Relay Manufacturer Specification
F	Brand DEF Relay Test Report
G	Brand ABC Turbine Technical Specifications
Н	Previous Transformer Inrush Test Result
I	Brand GHI Breaker Specifications
Line	Testing Notes
1	All field tests shall be conducted per IEEE 1547.1 procedures in referenced section
2	General requirements contained in IEEE 1547.1, Section 4 apply to field tests
3	Field tests conducted on complete commissioned facility to Area EPS
4	All field test data recording and instrumentation shall be controlled by the testing entity
5	Facility technicians will operate facility for purpose of field tests
6	More notes
7	More notes
8	More notes
9	And more notes
10	
11	
12	